
www.manaraa.com

Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2012

Robust evolutionary algorithms Robust evolutionary algorithms

Brian Wesley Goldman

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Goldman, Brian Wesley, "Robust evolutionary algorithms" (2012). Masters Theses. 5148.
https://scholarsmine.mst.edu/masters_theses/5148

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5148?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
mailto:scholarsmine@mst.edu

www.manaraa.com

ROBUST EVOLUTIONARY ALGORITHMS

by

BRIAN WESLEY GOLDMAN

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2012

Approved by

Dr. Daniel Tauritz, Advisor

Dr. Fikret Erçal

Dr. Donald Wunsch

www.manaraa.com

This work is licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Com-

mons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Published journal articles retain their original copyrights.

Copyright 2012

BRIAN WESLEY GOLDMAN

All Rights Reserved

www.manaraa.com

iii

PUBLICATION THESIS OPTION

This thesis has been prepared in the style utilized by the Genetic and Evolu-

tionary Computation Conference. Pages 4 – 29 have been accepted for publication

and pages 31 – 53 have been submitted for publication.

www.manaraa.com

iv

ABSTRACT

Evolutionary Algorithms (EAs) have shown great potential to solve complex

real world problems, but their dependence on problem specific configuration in or-

der to obtain high quality performance prevents EAs from achieving widespread use.

While it is widely accepted that statically configuring an EA is already a complex

problem, dynamic configuration of an EA is a combinatorially harder problem. Evi-

dence provided here supports the claim that EAs achieve the best results when using

dynamic configurations. By designing methods that automatically configure parts of

an EA or by changing how EAs work to avoid configurable aspects, EAs can be made

more robust, allowing them better performance on a wider variety of problems with

less requirements on the user.

Two methods are presented in this thesis to increase the robustness of EAs.

The first is a novel algorithm designed to automatically configure and dynamically

update the recombination method which is used by the EA to exploit known infor-

mation to create new solutions. The techniques used by this algorithm can likely be

applied to other aspects of an EA in the future, leading to even more robust EAs.

The second is an existing set of algorithms which only require a single configurable

parameter. The analysis of the existing set led to the creation of a new variation, as

well as a better understanding of how these algorithms work. Both methods are able

to outperform more traditional EAs while also making both easier to apply to new

problems. By building upon these methods, and perhaps combining them, EAs can

become even more robust and become more widely used.

www.manaraa.com

v

ACKNOWLEDGMENT

I would like to thank my advisor, Dr. Daniel Tauritz, for all his help getting

me this far. Without him I would not have produced nearly as much quality work. I

would also like to thank Dr. Fikret Erçal and Dr. Donald Wunsch for agreeing to be

on my thesis committee.

I would like to thank and apologize to my fiancée, Melissa Dobinsky, for putting

up with how much time I have spent working. Finally, I want to thank my parents,

Jeff and Jean Goldman, for giving me the support and freedom I needed to get here.

www.manaraa.com

vi

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION. iii

ABSTRACT . iv

ACKNOWLEDGMENT. v

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES . x

SECTION

1 INTRODUCTION . 1

PAPERS

1. META-EVOLVED EMPIRICAL EVIDENCE OF THE EFFECTIVENESS
OF DYNAMIC PARAMETERS . 4

ABSTRACT . 4

1.1 INTRODUCTION . 4

1.2 METHODOLOGY . 5

1.3 RESULTS & DISCUSSION . 6

1.4 CONCLUSION & FUTURE WORK 7

2. SELF-CONFIGURING CROSSOVER. 9

ABSTRACT . 9

1.1 INTRODUCTION . 9

1.2 RELATED WORK . 11

www.manaraa.com

vii

1.3 BACKGROUND . 12

1.4 METHODOLOGY . 12

1.4.1 Crossover Encoding and Application 12

1.4.2 Evolving Crossovers . 15

1.4.3 Added Complexity . 16

1.5 EXPERIMENTAL SETUP . 16

1.6 RESULTS . 20

1.7 DISCUSSION . 22

1.7.1 Adaptations to Each Fitness Function 22

1.7.2 Initial Crossover Length Sensitivity 25

1.8 CONCLUSION . 27

1.9 FUTURE WORK . 29

3. LINKAGE TREE GENETIC ALGORITHMS: VARIANTS AND ANALYSIS 31

ABSTRACT . 31

1.1 INTRODUCTION . 31

1.2 INITIAL POPULATION . 32

1.3 CONSTRUCTING TREES . 34

1.3.1 Cluster Distance . 34

1.3.2 Pairwise Approximation . 36

1.4 CROSSOVER . 36

1.4.1 Repeated Evaluations . 38

1.4.2 Subtree Ordering . 38

1.4.3 Parent Selection . 39

1.5 EXPERIMENTS . 41

1.6 DECEPTIVE TRAP . 43

1.7 DECEPTIVE STEP TRAP . 46

www.manaraa.com

viii

1.8 NEAREST NEIGHBOR NK . 51

1.9 CONCLUSIONS . 53

SECTION

2 CONCLUSIONS. 54

BIBLIOGRAPHY. 56

VITA . 59

www.manaraa.com

ix

LIST OF ILLUSTRATIONS

Figure Page

PAPER 2

1.1 Sample Self-Configuring Crossover and example application 13

1.2 Mean best fitness on NK . 21

1.3 Mean best fitness on Rastrigin . 22

1.4 Primitive usage on Rastrigin . 23

1.5 Primitive parameter usage on Offset Rastrigin 24

1.6 Primitive parameter usage on DTrap 25

1.7 Crossover length on Rastrigin . 27

1.8 Fitness for different initial crossover lengths on NK 28

www.manaraa.com

x

LIST OF TABLES

Table Page

PAPER 1

1.1 Fitness of dynamic parameters compared with static 8

PAPER 2

1.1 Base parameters used in Self-Configuring Crossover testing on real val-
ued problems . 17

1.2 Base parameters used in Self-Configuring Crossover testing on binary
problems . 18

1.3 Mean final best fitnesses achieved with standard deviation in parentheses 21

1.4 P-value comparison with optimum initial crossover length 30

PAPER 3

1.1 Existing variations on LTGA . 33

1.2 Example population and tree construction 35

1.3 Two parent crossover with least linked first ordering as used by Original 38

1.4 Two parent crossover with smallest first ordering as used by Pairwise 40

1.5 Global mixing crossover with least linked first ordering as used by LT-
GOMEA . 42

1.6 Global mixing crossover with smallest first ordering as used by LTS-
GOMEA . 42

1.7 Deceptive Trap results, k=5 . 45

1.8 Deceptive Trap results, k=7 . 46

1.9 Deceptive Step Trap results, k=5, s=2 48

1.10 Deceptive Step Trap results, k=7, s=2 49

1.11 NK results, k=5 . 52

www.manaraa.com

SECTION

1. INTRODUCTION

Each year Evolutionary Computation (EC) produces new human competitive

results on complex real world problems in an ever expanding array of fields. Often

the limiting factor for an Evolutionary Algorithm (EA) is not its potential, but the

difficulty of correct application for novice users or its time consuming nature for expert

users. If EC can overcome these limitations, then its impact on real world problem

solving will increase dramatically.

The basis for all EC is to perform population based heuristic search in which

quality past solutions are used to create new solutions that are predicted to have an

even higher quality. There are two hard requirements on applying EC to a new prob-

lem: a representation of possible problem solutions that allows for random generation

and modification and some method to determine the relative quality of those solu-

tions. From a biological perspective, these requirements can be restated as needing

a method to perform genetic encoding and fitness calculation in order to allow for

survival of the fittest with heritable traits.

While there are many varieties of EAs, the basic process involves incremental

improvement of a population by allowing higher quality solutions (more fit individu-

als) more control over the generation of new solutions (offspring). First, some set of

individuals from the population is chosen to act as the parents for a new offspring.

The genetic material from these parents is recombined and mutated in such a way

as to stochastically create a new solution with the hope that any successful traits

that existed in the parents will pass on to the offspring. Offspring are then rated to

www.manaraa.com

2

determine their quality (fitness). Once some number of offspring have been created

(a generation is completed), survival selection is performed to weed out low quality

solutions.

Most of the steps described above are controlled by configurable parameters

and operators. The size of the population and the number of offspring per generation

represent common configurable parameters, and the method of recombining parents to

create quality offspring represents a common configurable operator. When applying

EC to a new problem, it is often necessary to expertly configure the EA to achieve

the best results.

The goal for generalized search techniques such as EAs is to find the highest

quality results in the least amount of time on as wide a range of useful problems as

possible. EAs, in particular, are interested in finding high quality solutions to highly

complex real world problems. Many, if not most, complex real world problems require

a significant amount of time to determine the fitness of a single solution. For example,

when optimization is performed employing a simulation, a single fitness evaluation

can take minutes or more to complete. Based on this feature, run time analysis

for EAs is traditionally performed using the number of evaluations performed, as

the processing required to generate new candidate solutions is eclipsed by the time

it takes to evaluate those solutions. Furthermore, because real world problems can

be difficult to reproduce and time consuming to use, the EC community commonly

employs the use of benchmark functions designed to recreate the complexity of real

world problems without the associated overhead.

The first paper performs novel analysis of not only the impact of correctly

configuring an EA to each problem, but more specifically the impact of changing

those parameters during a single run of an EA. The experimental results provided

support the claim that to be maximally effective, the parameters of a common EA

cannot be kept constant during a single run. This provides a further argument for the

www.manaraa.com

3

difficulty of EA configuration as well as emphasizes the need to develop techniques

that avoid or reduce the impact of configuration.

The second paper introduces a method to automatically discover and dynam-

ically update how individuals are recombined during evolution. The proposed recom-

bination method, Self-Configuring Crossover, evolves along side the solution, with

more effective crossovers having a higher chance to propagate. This removes the need

to choose the best method of recombination for each problem, as over time the re-

combination method will evolve to fit the problem in use. Furthermore, as supported

by experimental evidence, this method allows the recombination operator to adjust

dynamically to meet the changing needs of evolution.

Another approach to making EAs more robust is to redefine how EAs work in

order to reduce the number of configurable parameters and operators. Often these

methods overcome problem specific configuration by learning during evolution, similar

to Self-Configuring Crossover. The Linkage Tree Genetic Algorithm (LTGA) is a state

of the art algorithm which takes this approach, requiring only a single parameter and

performing automatic detection of gene linkage. The third paper provides a detailed

discussion of the strengths and weaknesses of this algorithm helps provide a basis for

future work in making this easy to configure algorithm more widely applicable.

www.manaraa.com

4

PAPER

1. META-EVOLVED EMPIRICAL EVIDENCE OF THE

EFFECTIVENESS OF DYNAMIC PARAMETERS

ABSTRACT

Traditional evolutionary algorithms (EAs) are powerful problem solvers that have sev-

eral fixed parameters which require tuning. An increasing body of evidence suggests

that the optimal values of some, if not all, EA parameters change during the course

of executing an evolutionary run. This paper investigates the potential benefits of

dynamic parameters by applying a Meta-EA to evolving optimal dynamic parameter

values for population size, offspring size, n in n-point crossover, Gaussian mutation’s

step size, bit flip mutation’s mutation rate, parent selection tournament size, and

survivor selection tournament size.

Each parameter was optimized both as the only dynamic parameter, and with

all parameters dynamic. The most effective two parameters when acting indepen-

dently were also allowed to optimize in tandem. The results were compared with

a Meta-EA tuned EA using static parameters on the DTrap, NK, Rastrigin, and

Rosenbrock benchmark problems. Results support that all tested parameters have

the potential to improve solution fitness by changing dynamically, and using multiple

dynamic parameters was more effective than using each independently.

1.1. INTRODUCTION

The already time consuming process of parameter tuning to receive optimal

results in an Evolutionary Algorithm (EA) increases combinatorially when considering

www.manaraa.com

5

dynamically changing parameter values. A number of efforts have been made to

determine parameter values for each stage of an EA. Mutation has received the most

attention [1], but work has also been done in population size [2, 3], offspring size [4],

recombination [5], parent selection [6] and survival selection [3]. Some work has also

been done controlling multiple parameters at once [7, 8]. In most instances, the focus

of parameter control research has been to remove or reduce an EA’s dependency on

a priori tuning, or on creating algorithms to modify or predict parameter settings,

not necessarily to determine optimal settings. In [2], a hand-tuned EA using a static

population size was compared to a Meta-EA evolved dynamic population size. While

the dynamic population size obtained significantly better results, the difference in

tuning methods and the usage of generations instead of evaluations for tuning makes

the implications unclear.

1.2. METHODOLOGY

The following operators were chosen to be made dynamic: population size,

offspring size, n in n-point crossover, Gaussian mutation’s step size, bit flip muta-

tion’s mutation rate, parent selection tournament size, and survivor selection tour-

nament size. These operators were selected because they use parameters that allow

for straightforward dynamic modification and they are commonly used in EAs. Each

meta-individual’s genome represented key parameter values to use at evenly spaced

intervals of evaluations. To determine the value of a parameter between keys, linear

interpolation was used. By using a small number of keys, the Meta-EA can achieve a

significant decrease in search space complexity without a significant loss in expressive

power. To ensure fair comparison, a Meta-EA using a single key for each parameter

was used to determine the best static configuration and all non-dynamic parameters

employed these values.

www.manaraa.com

6

The fitness of a meta-individual was determined by the average final best

fitness of the set of EAs using that meta-individual. To compensate for meta-evolving

six different parameter combinations on four benchmark problems, the number of

Meta-EA runs and evaluations used were low, and each meta-individual was given 30

runs of an EA using a maximum of 5,000 evaluations. The DTrap, NK, Rastrigin and

Rosenbrock benchmark functions were employed to test the effectiveness of dynamic

parameters. They were chosen to represent the binary separable, binary inseparable,

real-valued separable multimodal, and real-valued inseparable classes of problems,

respectively.

Every parameter was tested using both two and five keys, to allow for exper-

iments with low search space versus high control. As a higher number of keys can

replicate fewer keys – by using identical key values sequentially – the worst fitness

any number of keys should be able to obtain is equal to the best value found by

a lower number of keys. As such, if the best dynamic parameter settings received

worse results than static, the reason is due to search space complexity, because in

an exhaustive search dynamic would at least find a way to mimic static. Additional

testing was also performed using the two best key settings in tandem, as well as using

two keys for every parameter at once.

1.3. RESULTS & DISCUSSION

The average and standard deviation of the best final fitness found by each

configuration on each problem is given in Table 1.1. Experiments are labeled using the

name of the parameter made dynamic and the number of keys used, with Combined

referring to the combination of the best two. Paired T-Tests were used to compare all

experiments with using the best found static configuration. To ensure the quality of

the static configuration, the hand-tuned parameters found in [2] were compared with

www.manaraa.com

7

the Meta-EA tuned parameters found here, showing the Meta-EA’s configuration to

receive significantly better results in half as many evaluations.

On all four problems tested, using a single dynamic parameter was able to

outperform the best found static configuration, in many cases to a statistically sig-

nificant degree. The exceptions to statistical significance are NK and Rosenbrock,

were the lack of time to converge is likely responsible for the high standard deviation.

Despite the significantly larger search space, using two parameters together was able

to outperform using either independently on DTrap, Rastrigin and Rosenbrock. Fur-

thermore, allowing all parameters to change dynamically resulted in the best results

of all experiments on Rosenbrock.

None of the experiments run resulted in final best meta-individuals who mim-

icked simpler dynamic settings. Also, when using dynamic parameters in tandem, the

best key settings found for each was different than using the parameters alone. This

implies that the best methods for parameter control are highly dynamic and highly

interdependent. Finally, each parameter tested received the best or second best re-

sults on at least one of the problems, meaning that to achieve best performance, all

parameters may need to be allowed to change dynamically.

1.4. CONCLUSION & FUTURE WORK

When using a Meta-EA to evolve parameter settings, a single dynamic param-

eter was found to be more effective than using strictly static parameters and all of the

tested dynamic parameters were more effective than static on at least one problem.

Using two dynamic parameters was better than using one dynamic parameter on all

problems except NK, and on Rosenbrock the most effective configuration allowed all

parameters to change dynamically together. The more a parameter changed, the bet-

ter fitness it was able to achieve. The optimal control trends also changed depending

on how other parameters were changing concurrently.

www.manaraa.com

8

Table 1.1: Fitness of dynamic parameters compared with static

Keys Fitness P-Value

4-Bit Concatenated DTrap, 100 Traps

Combined 0.838 (0.013) 0
Parent Selection 5 0.837 (0.014) 0

Offspring 5 0.831 (0.012) 0
All 0.814 (0.008) 0.373

Static 0.813 (0.009) 1
NK Landscapes, N=20, K=3

Population 2 0.766 (0.027) 0.325
Mutation Rate 5 0.765 (0.027) 0.383

Combined 0.764 (0.026) 0.464
Static 0.763 (0.024) 1.000
All 0.762 (0.026) 1.000

Rastrigin, N=20, A=10

Combined -8.278 (2.487) 0.002
Offspring 5 -8.816 (2.590) 0.011

Survival Selection 5 -9.538 (2.284) 0.063
Static -10.769 (3.590) 1
All -13.376 (4.471) 1
Rosenbrock, N=20, A=100

All -31.186 (31.716) 0.005
Combined -39.435 (56.788) 0.023

Mutation Step Size 2 -55.181 (78.896) 0.138
Recombination 2 -63.263 (66.377) 0.217

Static -79.545 (89.301) 1

While running a lower number of evaluations should be indicative of longer

runs, experiments using more common evaluation counts for the EA will allow for

more direct interpretation. Since the minimum quality for any dynamic configura-

tion should be to at least mimic the best less dynamic configuration, enough meta-

evolution to reach this point should be performed.

To increase generality of results, problems involving permutation based solu-

tions and real world problems should be attempted. Further experimentation, in-

cluding parameters using more keys, can determine if there are any common dynamic

parameter trends that can be used as the basis for control strategies.

www.manaraa.com

9

2. SELF-CONFIGURING CROSSOVER

ABSTRACT

Crossover is a core genetic operator in many evolutionary algorithms (EAs). The

performance of such EAs on a given problem is dependent on properly configuring

crossover. A small set of common crossover operators is used in the vast majority of

EAs, typically fixed for the entire evolutionary run. Selecting which crossover operator

to use and tuning its associated parameters to obtain acceptable performance on a

specific problem often is a time consuming manual process. Even then a custom

crossover operator may be required to achieve optimal performance. Finally, the best

crossover configuration may be dependent on the state of the evolutionary run.

This paper introduces the Self-Configuring Crossover operator encoded with

linear genetic programming which addresses these shortcomings while relieving the

user from the burden of crossover configuration. To demonstrate its general applica-

bility, the novel crossover operator was applied without any problem specific tuning.

Results are presented showing it to outperform the traditional crossover operators

arithmetic crossover, uniform crossover, and n-point crossover on the Rosenbrock,

Rastrigin, Offset Rastrigin, DTrap, and NK Landscapes benchmark problems.

1.1. INTRODUCTION

When using an Evolutionary Algorithm (EA), choosing the crossover operator

that best exploits known information can be difficult and is problem dependent [9] due

to differences in gene interdependence and representation. Many of the traditionally

used crossover operators require manual tuning to achieve the best results, beyond the

requirement of choosing the one most effective for the target problem. Furthermore,

this set of commonly used crossovers may not contain the operator best suited for

www.manaraa.com

10

exploiting a specific problem’s genetic representation. Finally, traditional crossover

operators do not change during different stages of evolution.

Any method capable of automatically evolving the optimal crossover operator

for a problem could help reduce development time and improve solution quality. If

the EA can design a crossover operator during run time, practitioners will no longer

need to configure that part of the EA. Also, evolved operators can discover ways of

exploiting the search space that are unlikely to be discovered by traditional designs.

These generated operators can also adapt to the changing needs of the evolutionary

process.

A Meta-EA could be used to evolve the crossover used by another EA; however,

in most real world applications of an EA, Meta-EAs require an infeasible amount of

computing time. A multiple species cooperative coevolutionary algorithm could also

be used. This method would require the creation of a second population to evolve

crossover operators. As one of the goals of this research is to reduce the time required

to use an EA, replacing the selection of the crossover operator with all of the tunable

parameters of a second population is undesirable.

This paper introduces Self-Configuring Crossover (SCX) encoded with linear

genetic programming (LGP), a nonbranching form of genetic programming (GP),

and evolved using self-adaptation. When performing crossover, each individual uses

its own operator to create a child. This child receives a version of the parent’s

operator as part of its genome. Quality crossover operators tend to create quality

children, therefore increasing their ability to propagate. If the operator is ineffective,

the offspring will tend to be poor, resulting in a lower likelihood of survival and

propagation.

www.manaraa.com

11

1.2. RELATED WORK

Network crossovers are specifically designed to exploit gene interdependence [10].

These operators use known problem specific gene linkage information to determine the

most successful method for recombination, and are able to significantly outperform

more traditional crossovers on problems with high gene interdependence. Unfortu-

nately, network crossovers require a practitioner’s knowledge of the search space to

determine gene linkage, making them problem dependent and difficult to apply to

black box optimization. While Linkage Learning [11] automatically determines gene

interdependence, this method is designed around binary gene representations, limiting

its general application.

Very little work has been done on automatically creating crossover operators.

[12] used a Meta-GP to evolve crossover operators. To perform crossover, GP was

applied to each locus independently, such that all genes used the same method to

recombine and each gene could only recombine with another gene at the same locus.

The result of the EA’s run was used as the fitness for the crossover operator. On the

problems tested, the resulting operators performed comparably to the most appropri-

ate traditional crossover operator. While such novel crossover operator creation is of

theoretical interest, the amount of a priori computation involved with meta evolution

is not justified, unless these novel operators are significantly less problem dependent

than traditional ones, which was not reported. If the benefits of dynamic parameters

seen in mutation step size [13] and population size [2] hold true for crossover, then

the crossovers designed in [12] are also limited by their inability to change during a

single run of the EA. The requirement of treating all loci in the same manner and

no allowance for crossover with genes in different loci may also have hindered this

method.

www.manaraa.com

12

1.3. BACKGROUND

LGP was first introduced in [14], where a language was created to evolve pro-

grams using a list of integers to represent a list of functions. Each of these functions

performed operations on, and stored results to, memory locations. The list of func-

tions is evaluated sequentially, and the final result is chosen from one of the memory

locations. The exclusion of any program branching limits this form of GP, but also

greatly reduces the search complexity.

Self-adaptation has been used extensively for mutation step size [15], and has

been applied to crossover by having individuals encode probabilities used to determine

which human created operator to use [5], or controlling the balance between crossover

and mutation [8]. While those methods were shown to work about as well as choosing

the correct operator from the start, they are highly limited by the operators they are

provided, which may not be the best operators possible for the target problem. Some

of their success may be based on the crossover operator’s ability to change dynamically

during the run, but no information was presented testing this possibility.

GP has been employed to encode self-adapted operators in the past. In one

instance the mate selection operator was automated by embedding a GP tree structure

into each individual, which was used to choose a mate [6]. This study found that this

system obtains results similar to EAs that required manually created mate selection

on the Onemax, D-TRAP, and SAT test problems.

1.4. METHODOLOGY

1.4.1. Crossover Encoding and Application. Self-Configuring Crossover

(SCX) is encoded using a linear structure similar to that of LGP [14] to reduce the

search space, as operators must be evolved during the evolution of a single EA. A

sample SCX and example application are shown in Figure 1.1. A crossover operator

www.manaraa.com

13

Figure 1.1: Sample Self-Configuring Crossover (left) and example application (right)

is represented by a list of primitive functions. To perform a crossover, the genes of

both parents are first concatenated. Next, each primitive in the first parent’s list is

applied in sequence to the copy of the genes, modifying it. In Figure 1.1 each new

row of genes represents a step between each primitive function’s application. Once

the entire list has been applied, half of the combined genome is used to create an

offspring.

As evolution of useful operators needs to occur during the run of a single EA,

search space minimization was a key factor in primitive design. The primitive set

was designed using the well explored functionality of traditional crossover operators.

While this biases encoded crossovers towards existing crossover operators, the vast

majority of encoded crossovers will be novel, while retaining the ability to replicate

traditional crossover operators when appropriate. Swap was designed to represent

crossovers that move genetic information between parents and between positions in

www.manaraa.com

14

a single parent such as n-point crossover, uniform crossover, and most permutation

based crossovers. Merge was designed to represent crossovers that create genetic

material by combining genes in a manner similar to arithmetic crossover. Both prim-

itives have three parameters. The first two control the gene positions effected by

the primitives. These positions can either both be located in a single parent or be

located within two different parents. The final parameter is primitive dependent. In

Figure 1.1, primitives are represented by a character identifier – S for Swap and M

for Merge – and their list of three parameters.

The Swap primitive’s third parameter is width. To perform a Swap, genetic

material starting at the position indicated by the first position parameter swaps lo-

cation with genetic material starting at the second position. The amount of material

moved is equal to the width of the Swap. This method allows blocks of information to

be kept together. The first primitive applied in Figure 1.1 is a Swap. Data is moved

from the first position, 3, to the second position, 5, at a width of 2.

The Merge primitive’s third parameter is weight. To perform a Merge, the

values contained at each position are combined using a weighted average as shown in

Equation 1.1, where g(i) is the gene at the first position, g(j) is the gene at the second

position, and α is the weight, identical to arithmetic crossover’s α. The process is

repeated to find the new value for the second position. When performing a Merge on

discrete problems, values are rounded to the nearest valid value. For example, if on

a binary problem g(i)=0, g(j)=1, and α=0.6, the resulting value of g(i) would be 0.

g(i) = α · g(i) + (1− α) · g(j) (1.1)

To increase flexibility, the parameter for each primitive can be set in multiple

ways. The first is the Number construct, which uses a static value set at primitive

creation every time the primitive is used. Next, the Random construct creates a

www.manaraa.com

15

new random number every time the primitive is used. The purpose of Random is

to allow SCX to exhibit a stochastic behavior similar to almost all human created

crossover operators. The final construct Inline is only used for position parameters.

Inline ensures that the primitive is performing all of its actions between the same

loci in both parents. In Figure 1.1, r is for primitive parameters using the Random

construct, and i is for using the Inline construct.

1.4.2. Evolving Crossovers. When using self-adaptation, the common prac-

tice is to evolve the operator before using it to produce a child [16]. This allows the

operator to evolve more freely, but if an optimal operator is developed, it will not

be reused. Another option is to evolve the parent’s operator after use, allowing the

same operator to be reused. Preliminary experimentation indicated that evolving the

crossover before use obtained better results. This method was used in all further

experiments.

Since the crossover being evolved is not designed to handle GP, a method

is needed to evolve the encoded crossover operator. When performing crossover on

the encoded crossover operator, a random point is chosen in each parent’s list of

primitives. All of the genetic information before the randomly chosen point in the

first parent and all of the information after the point chosen in the second parent

is concatenated. This allows the lists to easily change in size, due to omitted or

duplicated loci usage, with children having between one primitive and all of the

primitives of both parents. On average this style will only change the length of the

crossover if there is selective pressure to change the size. Empirical evidence shows no

need for parsimony pressure as the crossover lengths converged to problem dependent

sizes.

Mutation of crossovers is done by randomly generating the primitive chosen for

mutation, using the same number of expected mutations per primitive as the primary

www.manaraa.com

16

genome. These methods for crossover and mutation have both been used successfully

in LGP [14].

1.4.3. Added Complexity. As one of the goals of this method is to reduce

the need to configure and tune an EA, any parameters added by using SCX need to

be checked for their impact on solution quality. The initial length of the crossovers in

the population is an unavoidable parameter, unique to SCX. To examine the impact

of this parameter, tests were performed as described in Section 1.5 to measure how

effective SCX is with widely varying initial crossover lengths. The results of these

tests were compared with the best found value for this parameter as described in

Section 1.7. If optimization is found to produce no significant change in results, the

impact of this parameter can be considered insignificant.

A final consideration for this technique is how it effects the overall convergence

time of an EA. As this method does not use any added a priori tuning, and does not

require any additional evaluations of the fitness function, the only increase in runtime

is due to the application and evolution of crossovers. As each crossover is linearly

encoded, and each primitive performs at most a linear operation on the constant size

of the genes, the algorithmic and space complexities added by SCX are negligible.

1.5. EXPERIMENTAL SETUP

To test the effectiveness of SCX, a set of three real-valued benchmark problems

and two binary benchmark problems was chosen. The Rosenbrock problem [17], as

defined in Equation 1.2, was used as representative of real-valued problems with gene

interdependence.

n−1
∑

i=1

[

(1− xi)
2 + A(xi+1 − x2

i)
2
]

∀x ∈ [−5, 10] (1.2)

www.manaraa.com

17

Table 1.1: Base parameters used in Self-Configuring Crossover testing on real valued
problems

Parameter Rosenbrock Rastrigin Offset Rastrigin

A/K 100 10 10
Genome Size 50 100 100
Evaluations 100,000 10,000 100,000
Population 355 172 418
Offspring 2 5 6

Mutation Rate 0.213557 0.009838 0.009738
Mutation Step 0.033593 1.47144 0.587874

Parent Tournament 339 114 172
Survival Tournament 344 63 421

Mutation Type Creep Creep Creep
Crossover Arithmetic Arithmetic Arithmetic

This function contains a valley which is easy to find, but once found it can

be difficult to converge to the global optimum. To represent the class of highly

multimodal functions, the Rastrigin problem [18] was chosen, shown in Equation 1.3.

An+

n
∑

i=1

[

x2

i − A cos(2πxi)
]

∀x ∈ [−5.12, 5.12] (1.3)

In both Rosenbrock and Rastrigin, the optimum value for each gene is identi-

cal. To test SCX’s ability to handle loci with different optima, the final real-valued

equation was chosen as a specially designed modification of the Rastrigin equation,

here called Offset Rastrigin. Before the first evaluation, an offset vector O is gen-

erated, where Oi is randomly chosen from [−2.5, 2.5] at intervals of 0.5. For exam-

ple, if three dimensions are used, some possible offset vectors are {2,−0.5, 1.5} and

{0,−2.5, 1}. In all subsequent evaluations, the fitness is calculated on an individual’s

modified genes by adding this offset vector. Intervals of 0.5 were chosen because in

the Rastrigin function, if xi is a local best, xi + 0.5 is a local worst. If xi is near the

global optimum, then xi + 1 will be near a local optimum.

The NK-Landscapes (NK) problem [19] was chosen to represent binary prob-

lems with gene interdependence. In this problem, N genes are dependent on K other

www.manaraa.com

18

Table 1.2: Base parameters used in Self-Configuring Crossover testing on binary prob-
lems

Parameter NK DTrap I DTrap II

A/K 7 4 4
Genome Size 50 400 400
Evaluations 100,000 50,000 50,000
Population 283 498 95
Offspring 148 489 135

Mutation Rate 0.055115 0.000001 0.001429
Mutation Step N/A N/A N/A

Parent Tournament 1 1 1
Survival Tournament 374 658 42

Mutation Type Bit Flip Bit Flip Bit Flip
Crossover 16 Point 11 Point SCX Only

genes for their fitness. As gene dependence is not related to their position in the

genome, many crossover operators have difficulty determining what blocks of infor-

mation to keep together, making this an ideal candidate for testing SCX’s ability to

overcome the limitations of traditional crossovers. This method relies on randomly

generated fitness landscapes, so a common set was used by all experiments.

For comparison, 4-bit concatenated DTrap [20] is included. This binary prob-

lem consists of a series of 4-bit traps. Each trap’s fitness is equal to 4 if all of the

bits are set, and equal to the number of unset bits otherwise. Equation 1.4 shows

the fitness for a single trap where t is the number of set bits. Unlike NK, DTrap has

very well defined groupings of genes. DTrap also has easy to define fitness bounds,

allowing for the fitness to be expressed as a percentage of optimal.

f(t) =

3− t, t < 4

4, t = 4
(1.4)

To test the quality of SCX on these benchmark problems, comparisons were

performed with arithmetic crossover (AX), n-point crossover (NPX), and uniform

www.manaraa.com

19

crossover (UX), which were the basis for SCX’s primitives, and represent the most

widely used classes of crossover.

Since mutation works in tandem with crossover, a great deal of tuning was

done to choose this operator. For real-valued problems, a commonly used mutation

operator is Gaussian. In preliminary testing, this operator showed some difficulty

scaling to the larger genome sizes desired. So a modification was made, borrowing

some techniques from the traditional integer mutation operator Creep. Instead of

adding a normally distributed random number to all genes, this real-valued Creep

mutation has a probability to mutate each gene, and each mutation is performed

by adding a normally distributed random number. This allows real-valued Creep

mutation to make minor changes to a solution independent of the number of genes,

by modifying a percentage of the total number of genes and still using an appropriate

step size. This mutation was used for all real-valued problems. All binary problems

used Bit Flip mutation.

A common problem when comparing EAs is the question of parameter quality.

Hand tuning parameters can often lead to configurations far worse than many more

advanced tuning techniques [21]. In many cases lack of rigorous tuning can lead to

questions of if an algorithm succeeded due to its own quality, or due to the optimality

of the parameters used for each algorithm tested. In an attempt to overcome this

issue, a Meta-EA was used to determine the parameters for the comparison EAs.

An EA using each of the comparison crossover operators was given to a Meta-EA

capable of modifying all of its parameters. This Meta-EA was run extensively using

each crossover operator for each problem to find high quality parameter settings. AX

obtained the best results on all three real-valued problems and NPX obtained the best

on the two binary problems. UX was not found to be the best traditional crossover

for any test problem.

www.manaraa.com

20

Whichever traditional operator obtained the best results after tuning was cho-

sen to compete with SCX in final experimentation. To minimize the difference be-

tween the comparison operators and SCX, all parameter settings were kept identical.

This method sets the quality of the traditional operator as high as possible, while forc-

ing SCX to use possibly suboptimal tuning. The configuration settings are presented

in Table 1.1 and Table 1.2. The only exception to this method was DTrap, as the

optimal settings for NPX were too detrimental to SCX. To provide a fair comparison,

NPX was run using its best found configuration (DTrap I), while SCX was run using

UX’s optimum configuration (DTrap II). UX’s configuration was used because UX

achieved the second best results of the traditional crossovers. As SCX’s parameter

of initial crossover length could not be used directly from the comparison operator’s

tuning, an arbitrary value of 5 was used for all problems. All experiments were run

100 times to gather statistically significant results.

Additional testing was also done to determine the sensitivity of solution quality

to initial crossover length. To do so, SCX was run on each problem using initial

crossover lengths in the range [10,200] at steps of 10. The edge case of 1 was also

tested.

1.6. RESULTS

The results comparing the best traditional crossover found with SCX are pre-

sented in Table 1.3. Each experiment shows the mean and standard deviation of the

final best over 100 runs for each crossover. A T-test was performed to determine if

SCX’s results were statistical better than the traditional crossover operator. All tests

had statistically significant differences with a confidence level better than α=0.001.

Figure 1.2 and Figure 1.3 show fitness plots for NK and Rastrigin respectively.

These figures are representative of all of the problems tested, both average and best.

They indicate that SCX improved faster than the best comparison crossover, as well

www.manaraa.com

21

Table 1.3: Mean final best fitnesses achieved with standard deviation in parentheses

Problem Comparison SCX

Rosenbrock -86.94 (54.54) -26.47 (23.33)
Rastrigin -59.20 (6.998) -0.0088 (0.021)

Offset Rastrigin -0.1175 (0.116) -0.0300 (0.028)
NK 0.7710 (0.011) 0.8016 (0.013)

DTrap 0.9782 (0.005) 0.9925 (0.021)

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0 10 20 30 40 50 60 70 80 90 100

M
ea

n
 B

es
t

F
it

n
es

s

Evaluations (In Thousands)

SCX
NPX

Figure 1.2: Mean best fitness on NK

as reaching the optimum sooner, or if the optimum was not reach, continuing to

improve after the comparison operator converged. Figures 1.4, 1.5, and 1.6 provide

insight into the internals of SCX. These show what percentage of the total number

of primitives and parameter constructs are in use by SCX over the course of runs on

different problems.

Sensitivity analysis of initial crossover length employed ANOVA and protected

T-tests, with results shown in Table 1.4. ANOVA was used to determine if any initial

length obtained significantly different final results from any other initial length. In any

test where ANOVA reported a value higher than the critical value, pairwise T-tests

were performed. Each run using a different initial crossover length was then compared

www.manaraa.com

22

-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100

 0

 0 1 2 3 4 5 6 7 8 9 10

M
ea

n
 B

es
t

F
it

n
es

s

Evaluations (In Thousands)

SCX
AX

Figure 1.3: Mean best fitness on Rastrigin

with the run obtaining the highest fitness, resulting in a P-value. This value indicates

the minimum confidence required to state that the test value was significantly worse

than the best found. Figure 1.7 shows the effects of initial crossover length on the

actual crossover length during the run.

1.7. DISCUSSION

For all five benchmark problems SCX obtained statistically better final results

than AX, NPX, and UX. These results are reported in Table 1.3. Every problem

except DTrap used the exact same configuration information for SCX as for the best

traditional crossover. On DTrap, the hindrance of using a configuration optimal

for NPX but not for SCX proved to be too significant, so SCX was allowed to use a

different configuration setup. This difficulty is likely due to the strangely low mutation

rate, shown in Table 1.2, used in the best NPX configuration found.

1.7.1. Adaptations to Each Fitness Function. On Rosenbrock, SCX was

likely able to outperform AX due to its ability to better handle gene interdependence

www.manaraa.com

23

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 1 2 3 4 5 6 7 8 9 10

A
v

er
ag

e
U

sa
g

e
P

er
ce

n
ta

g
e

Evaluations (In Thousands)

Swap
Merge

Figure 1.4: Primitive usage on Rastrigin

and to prevent gene stagnation. Due to SCX’s ability to control how information is

moved, it is possible that it could more easily escape local optima by only modifying

specific genes. An even more likely possibility is that SCX’s ability to move genetic

information between loci allowed it to move optimized values in one gene location to

another.

Rastrigin obtained some of the most striking results in favor of SCX. After just

10,000 evaluations, SCX was within a marginal distance of the global optimum, while

AX was still far from the optimum, as shown in Table 1.3. On Offset Rastrigin, which

is effectively the same problem for AX, after 10 times more evaluations, AX was still

significantly further from the global optimum than SCX. Again, SCX’s ability to mix

genetic material between gene locations is a likely explanation for some of its success.

Another possible reason can be seen in Figure 1.4. Over the course of an average run,

SCX switches from being predominantly composed of Swaps to using mostly Merges.

The ability to change dynamically over time is not a feature of traditional crossovers.

It is likely that, in the early evaluations, Swaps are able to preserve genes in local

optima, while Merges could combine two local bests to create a local worst. Once

www.manaraa.com

24

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 10 20 30 40 50 60 70 80 90 100

A
v

er
ag

e
U

sa
g

e
P

er
ce

n
ta

g
e

Evaluations (In Thousands)

Number
Random

Inline

Figure 1.5: Primitive parameter usage on Offset Rastrigin

the search has reached a point where most genes are inside the peak where the global

optimum is located, Merge can help create genetic material that is guaranteed to be

better than the worst value of the two parents.

Offset Rastrigin was designed to counteract SCX’s ability to move genes from

one locus to another. As such, SCX had a significantly harder time solving this

problem than normal Rastrigin. Even so, it resulted in statistically better results

than AX. Figure 1.5 shows SCX’s ability to adapt to the problem at hand. In a

very small number of evaluations, approximately 50% of all constructs were Inline,

meaning that almost all primitives were acting between identical loci.

The same operator that was able to outperform all of the traditional operators

on real-valued problems was also able to outperform them on binary problems without

any modification. Figure 1.2 shows SCX greatly outperforming NPX on NK, in

that NPX appears to have stagnated while SCX is still improving. The most likely

explanation is that SCX was better able to overcome gene interdependence than NPX.

Another likely benefit is the reduction of gene stagnation. In NPX, if no member of

the population has a particular allele at a particular locus, then only mutation can

www.manaraa.com

25

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 5 10 15 20 25 30 35 40 45 50

A
v

er
ag

e
U

sa
g

e
P

er
ce

n
ta

g
e

Evaluations (In Thousands)

Number
Random

Inline

Figure 1.6: Primitive parameter usage on DTrap

reintroduce that allele. Thus, local optima can spread a specific individual through

the population, reducing genetic diversity. In SCX, as long as an allele exists in any

locus, SCX is able to spread that allele to all other genes.

The final test problem was DTrap. SCX’s improvement over traditional crossovers

was the least significant on this problem, and required a different configuration to

achieve statistically significantly better results than NPX. Figure 1.6 shows SCX bi-

asing towards Inline for a short time, but then returning to even usage, likely because

SCX is exploiting the similarity in the search space. In the beginning it focuses on

optimizing individual traps. Once this is done, it moves genetic material between

traps. Since the optimal value is to have all bits set, and the next best is to have no

bits set, this inter-gene mixing can help SCX escape local optima. A likely reason

SCX had difficulty on DTrap as opposed to the other test problems is its genome size.

1.7.2. Initial Crossover Length Sensitivity. The significance of the ini-

tial crossover length parameter is reported in Table 1.4. All tests for Rastrigin and

Offset Rastrigin obtained no statistical difference when using initial values ranging

from 1 to 200, indicating this parameter has little to no effect on these problems.

www.manaraa.com

26

Figure 1.7 shows the average crossover length quickly converging to a common value,

which is likely responsible for how little effect the initial length has on final solution

quality. Also, the convergence value changes throughout the run, indicating a need

for the length to change dynamically.

When using a confidence level of α=0.05 on DTrap, only the three smallest

tests obtained statistically worse results than the optimal value found. Also, setting

the parameter anywhere between 70 and 200 causes no significant change to the final

results, and higher values are likely to continue this trend. Therefore, the final result

should be considered very insensitive to this new parameter.

While Rosenbrock had more sensitivity to initial crossover length than Rast-

rigin, Offset Rastrigin, and DTrap, it was not very significant. Approximately 52%

of the tests obtained statistically worse results than the optimal value found. All ini-

tial crossover length tests using a value greater than 120 obtained indistinguishable

results at this confidence level.

NK experienced the greatest impact of initial crossover length on final solution

quality, with 57% of tests receiving statistically worse results than optimal settings.

NK was also the only problem to show improvement by having smaller initial length,

as 10 through 90 obtained results of similar quality to the optimal value. A likely

explanation for NK’s sensitivity is shown in Figure 1.8, which shows the fitness of the

different initial crossover lengths over time. While the different initial lengths have

widely different results in the middle of the run, they appear to be converging near

the end. What likely happened is that the different runs require different amounts of

time to converge the crossover length to the correct size. Thus, they will take longer

to converge, but will likely reach similar results.

While some of the problems’ final solution quality was marginally impacted

by the initial crossover length, it is important to compare this impact with what this

parameter replaces. When performing the comparisons with traditional crossovers,

www.manaraa.com

27

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 1 2 3 4 5 6 7 8 9 10

A
v

er
ag

e
N

u
m

b
er

 o
f

P
ri

m
it

iv
es

 i
n

 a
 C

ro
ss

o
v

er

Evaluations (In Thousands)

Figure 1.7: Crossover length on Rastrigin

SCX always used an initial length of five. On Rosenbrock and DTrap, this value

falls between the two worst initial lengths tested. On NK, the only other problem

to receive statistically different results based on initial crossover length, the optimal

value found was 80. Even the worst settings tested for this parameter resulted in

SCX outperforming the best of the traditional crossovers.

It is also important to note that in all problems except DTrap, SCX was using

the best configuration for the traditional crossover. It is possible that some initial

crossover lengths obtained statistically different results than others due to configura-

tion. For example, Rosenbrock and NK both used drastically higher mutation rates

than other problems that saw much less parameter sensitivity.

1.8. CONCLUSION

Properly configuring an EA requires a lot of testing, and poorly chosen crossover

operators can greatly reduce solution quality. To minimize these issues and create

more powerful crossover operators, Self-Configuring Crossover (SCX) is introduced in

www.manaraa.com

28

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0 10 20 30 40 50 60 70 80 90 100

A
v

er
ag

e
B

es
t

F
it

n
es

s

Evaluations (In Thousands)

Figure 1.8: Fitness for different initial crossover lengths on NK

this paper. This method expands an individual’s genome to include an LGP encoded

crossover operator, used whenever that individual creates a child. This operator is

defined using two primitives, Swap andMerge, chosen to represent the building blocks

of existing crossovers.

To test this new method, three traditional operators (arithmetic crossover,

n-point crossover, uniform crossover) were used for comparison on five benchmark

problems (Rosenbrock, Rastrigin, Offset Rastrigin, NK, DTrap). Each comparison

operator was tuned extensively by a Meta-EA to help ensure the best possible perfor-

mance. Whichever operator obtained the best results was then statistically compared

with SCX. On all problems tested, SCX was able to statistically outperform the

traditional operators.

Since SCX introduces a new parameter, initial crossover length, analysis was

performed to test how much impact this parameter has on final solution quality.

For all problems, statistically optimal results at a confidence of α=0.05 could be

reached by a range of 80 or more values. Also, while the initial crossover length may

effect SCX’s performance, without optimization SCX still outperformed all traditional

www.manaraa.com

29

crossovers on all problems tested. As a result, the effect of this parameter should be

considered negligible.

1.9. FUTURE WORK

SCX needs to be compared on a wider range of problems with state-of-the-art

crossover operators, such as network crossover [10] and linkage learning [11], as well as

advanced EAs such as Estimation of Distribution Algorithms [22] and CMA-ES [23].

SCX also needs to be generalized to cover permutation based problems. All of the

experiments performed in this paper used configurations optimized for crossovers

other than SCX. To better examine the full potential of SCX, experiments need to

be performed using SCX with optimal configurations. While a considerable amount

of work was done to optimize how SCX encoded crossovers and performed crossover

evolution, further study to improve these mechanics is expected to result in further

SCX improvement.

www.manaraa.com

30

Table 1.4: P-value comparison with optimum initial crossover length

In
it
ia
l
L
e
n
g
th

R
o
se
n
b
r
o
c
k

R
a
st
r
ig
in

O
ff
se
t
R
a
st
r
ig
in

N
K

D
T
r
a
p

1 0.000 1.000 1.000 0.014 0.000
10 0.001 1.000 1.000 0.051 0.004
20 0.000 1.000 1.000 0.077 0.002
30 0.000 1.000 1.000 0.245 0.073
40 0.001 1.000 1.000 0.298 0.471
50 0.002 1.000 1.000 0.689 0.978
60 0.010 1.000 1.000 0.167 0.361
70 0.009 1.000 1.000 0.080 1.000
80 0.076 1.000 1.000 1.000 1.000
90 0.034 1.000 1.000 0.050 1.000
100 0.033 1.000 1.000 0.015 1.000
110 0.002 1.000 1.000 0.001 1.000
120 0.401 1.000 1.000 0.001 0.912
130 0.201 1.000 1.000 0.000 1.000
140 1.000 1.000 1.000 0.000 1.000
150 0.194 1.000 1.000 0.000 1.000
160 0.611 1.000 1.000 0.000 1.000
170 0.626 1.000 1.000 0.000 1.000
180 0.100 1.000 1.000 0.000 1.000
190 0.184 1.000 1.000 0.000 1.000
200 0.420 1.000 1.000 0.000 1.000

www.manaraa.com

31

3. LINKAGE TREE GENETIC ALGORITHMS: VARIANTS AND

ANALYSIS

ABSTRACT

Discovering and exploiting the linkage between genes during evolutionary search al-

lows the Linkage Tree Genetic Algorithm (LTGA) to maximize crossover effective-

ness, greatly reducing both population size and total number of evaluations required

to reach success on decomposable problems. This paper presents a comparative anal-

ysis of the most prominent LTGA variants and a newly introduced variant. While

the deceptive trap problem (Trap-k) is one of the canonical benchmarks for testing

LTGA, when LTGA is combined with applying steepest ascent hill climbing to the

initial population, as is done in all significant LTGA variations, Trap-k is trivially

solved. This paper introduces the deceptive step trap problem (StepTrap-k,s), which

shows the novel combination of smallest first subtree ordering with global mixing

(LTS-GOMEA) is effective for black box optimization, while least linked first subtree

ordering (LT-GOMEA) is effective on problems where partial reevaluation is possible.

Finally, nearest neighbor NK landscapes show that global mixing is not effective on

problems with complex overlapping linkage structure that cannot be modeled cor-

rectly by a linkage tree, emphasizing the need to extend how LTGA stores linkage to

allow the power of global mixing to be applied to these types of problems.

1.1. INTRODUCTION

Linkage learning has been shown to benefit the performance of evolutionary

algorithms and a variety of linkage algorithms have been developed which use non-

tree structures [24]. The canonical Linkage Tree Genetic Algorithm (LTGA) variant

was introduced in 2010 [25, 26] with two promising additional variants being intro-

www.manaraa.com

32

duced in 2011 [27, 28]. The basis for all LTGA variants is the identification of linked

substructures in the genome by examining the entropy in the current population and

representing the linkages as a hierarchical tree. Each node in the tree represents a clus-

ter of linked genes and the children of each node are non-overlapping subsets of their

parent. To exploit the linkage information, LTGA performs a multistage crossover

designed to allow lots of exploration without disrupting interdependent genes. The

LTGA variants differ in the exact method for how they construct their linkage tree,

apply it during crossover, and select parents to perform crossover on, with little anal-

ysis of the advantages and disadvantages of each of these options. Furthermore, most

of the work done with LTGA employs Steepest Ascent Hill Climbing (SAHC) on the

initial population to help the initial tree construction, the effects of which warrant

further investigation.

Table 1.1 shows the principal differences between the different LTGA variants

in terms of option combinations. The next few sections provide an introduction to how

LTGA works and explain the rationale driving these different option combinations.

The effects of each option are discussed and some experimental evidence provided

to support this discussion. To isolate the effects of each, a new LTGA variation

consisting of a unique option combination is introduced. Also, a new benchmark is

introduced in Section 1.7 to better understand how LTGA exploits the local search

on the population. Finally, the conclusions will summarize the findings and indicate

which variant is best under what circumstances.

1.2. INITIAL POPULATION

In LTGA’s canonical form, the initial population undergoes SAHC before

starting evolution. In each SAHC iteration, all of an individual’s neighbors are eval-

uated. If any of those neighbors are better than the current individual, then the

best neighbor replaces it. SAHC continues until no improvement can be found. On

www.manaraa.com

33

Table 1.1: Existing variations on LTGA

Dimension Options

Initial Population Random / SAHC
Clustering Full / Pairwise

Subtree Ordering Least Linked First / Smallest First
Crossover Two-Parent / Global Mixing / Global Best Next
Variations Options Used

Original [25, 26] SAHC, Full, Least Linked First, Two-Parent
Original+ SAHC, Pairwise, Least Linked First, Two-Parent

Pairwise [27] SAHC, Pairwise, Smallest First, Two-Parent
LT-GOMEA [28, 29] SAHC, Pairwise, Least Linked First, Global Mixing

LTS-GOMEA SAHC, Pairwise, Smallest First, Global Mixing

binary problems, the SAHC neighborhood consists of all individuals within one bit

flip of the original individual. The primary reason given for why LTGA uses SAHC

on the initial population is to discover linkage information [27]. The linkage tree is

constructed using all of the individuals in the current population and is built before

any type of selection occurs. As a result, if SAHC is not performed on the initial

population and no other steps are taken, LTGA attempts to determine the linkage of

randomly generated genes. Not only does this create a meaningless tree, [27] argues

that applying those trees can be very harmful to the search’s success. If SAHC is

not used, they suggest some form of selection be performed prior to the initial tree

creation, such as tournament selection.

Using SAHC on the initial population can result in up to µn2 evaluations.

On some problems it is possible to do partial reevaluation such that neighbors of an

individual can be evaluated at a much lower cost than a brand new individual [29].

In such cases, the total number of SAHC iterations is counted, which has an upper

bound of µn steps. As a promising offset to SAHC’s cost based on population size,

[29] shows how performing local search can reduce the population size required to

achieve success.

www.manaraa.com

34

1.3. CONSTRUCTING TREES

LTGA stores linkage information as a tree. Each node in the tree represents a

cluster of genes that LTGA believes to be interdependent. The more linked two genes,

the further from the root they will be linked. Each tree is built by first creating a

subtree with one node for each locus in the genome. LTGA then iteratively joins the

two subtrees that it considers the most linked into a binary tree whose root contains

all of the loci of both subtrees. As a result, the number of subtrees is reduced by

one each iteration, meaning the total number of nodes in the final tree is twice the

number of dimensions.

To aid in explaining the LTGA variants, Table 1.2 provides an example pop-

ulation and the construction of a linkage tree for that population. The first three

loci (a, b, and c) and the last three loci (d, e, and f) are likely linked, respectively.

When constructing this tree, the first merge combines a and b. In the next iteration,

LTGA can combine any of the remaining individual loci with each other, as well as

with the newly created subtree ab, but it can no longer combine loci with just a or b.

This represents one of the limitations of LTGA, since it is unable to fully capture a

relationship such as a linked to b and b linked to c without a linked to c. The closest

approximation LTGA can make to this type of linkage is if a is more tightly linked

to b than b is to c, then the linkage tree can contain both ab and abc, which is one

of the primary advantages of a tree representation over simple clusters. Also, since

LTGA rebuilds the linkage tree each generation, changes in the population can allow

it to shift priorities, for instance from ab to bc. It is important to note that the tree

provided in Table 1.2 is not the only one that can be constructed for this population

and that LTGA contains no bias based on where loci are positioned in the genome.

LTGA also has no bias on merging larger or smaller subtrees first.

1.3.1. Cluster Distance. The linkage between genes is determined using the

normalized variation of information, as defined by Eq. 1.5 where D is the distance

www.manaraa.com

35

Table 1.2: Example population and tree construction

Individual 1 000000
Individual 2 111000
Individual 3 000111
Linkage Tree abcdef

Merge 1 ab
Merge 2 abc
Merge 3 de
Merge 4 def

between cluster Ci and Cj, and H is the entropy of a cluster, as given by Eq. 1.6.

H(Ci, Cj) denotes the entropy of Ci∪Cj , with S representing all possible strings that

cluster C can be, and pc(S) being the percentage of the current population that has

cluster C set to S.

D(Ci, Cj) = 2−
H(Ci) +H(Cj)

H(Ci, Cj)
(1.5)

H(C) = −
∑

S

pc(S) log(pc(S)) (1.6)

As a result, D(Ci, Cj) provides the ratio of the entropy of the clusters separately to

the clusters joined. The minimum distance is achieved when, for each S in Ci there is

exactly one S’ in Cj such that all individuals who have S also have S’. This method

of calculating distance measures how well the contents of one cluster can predict

another, which implies they are linked.

Using the example population in Table 1.2 and starting after the first merge,

lets find the distance between the cluster ab and the clusters c and d. For cluster

ab, pab(00) = 2/3, pab(11) = 1/3, and all other possible strings for ab never occur in

the population. Both c and d have p(0) = 2/3 and p(1) = 1/3. This means that the

nominator in Eq. 1.5 will be the same for both D(ab, c) and D(ab, d) and also that all

three clusters have the same value for H. Joined, pabc(000) = 2/3 and pabc(111) = 1/3

for abc and pabd(000) = 1/3, pabd(110) = 1/3 and pabd(111) = 1/3 for abd. Because

www.manaraa.com

36

the entropy for abd is higher than abc, the distance value for ab to c will be lower,

and LTGA will choose to join abc first.

1.3.2. Pairwise Approximation. In the original LTGA variant [25, 26],

hereafter referred to simply as Original, the method given in Section 1.3.1 was used

to merge all clusters. However, a follow up paper showed that this method does not

scale well, as calculating the entropy between all possible clusters becomes very time

consuming when solving high-dimensional problems [27]. To overcome that problem,

that paper proposed an estimation method, provided in Eq. 1.7.

D′(Ci, Cj) =
1

|Ci| · |Cj|

∑

ci∈Ci

∑

cj∈Cj

D(ci, cj) (1.7)

Instead of finding the entropy of an entire cluster, this measure only finds the entropy

between all pairs of loci in the population. To deal with clusters of sizes greater than

one, this method finds the average of the pairwise entropy for all loci in Ci with all

loci in Cj. While the intent behind this metric was to reduce the time complexity

used to construct trees, in which it succeeded, using the pairwise distance also led to

a drop in the population size and number of evaluations required to achieve success

on a number of problems [27]. The first algorithm to use this method is hereafter

referred to as Pairwise, and Original using this method is called Original+.

1.4. CROSSOVER

The linkage tree is used to perform crossovers that do not disrupt gene linkage,

while still exploring the search space. Each subtree in the linkage tree is used as

a crossover mask, such that all of the genes in that subtree’s cluster are crossed

between the parents. When creating a single offspring, all of the crossover masks are

used sequentially. Crossovers that create an improvement are kept, while detrimental

changes are discarded. As was discussed in the context of LT-GOMEA [28, 29], this

www.manaraa.com

37

incremental change can be seen as a form of local search. Since the leaves of the

linkage tree each contain a single locus, LTGA’s crossover will mimic a simple hill

climber or bit flip mutation.

Table 1.3, Table 1.4, Table 1.5, and Table 1.6 all provide examples of how

LTGA performs crossover, each for a different variant. The left column in each shows

which subtree cluster is in use and the right column(s) show how the offspring are

being modified. Each offspring is created through a series of 2N−2 crossovers, where

N is the number of problem dimensions. This includes all crossovers of length one

and all other subtrees in the linkage tree. The root of the tree, which contains all of

the loci, is not crossed because it will not create any new individuals.

Since the most linked genes are clustered first and are treated as a unit in

all further clustering, few crossovers will occur that can disrupt their linkage. For

instance, the two genes that have the minimum distance (tightest linkage) will be

merged first. All other clusters will either contain both genes or none, so only two

of the 2N − 2 crossovers act on one gene but not the other. Conversely, pairs of

clusters with the highest distance (weakest linkage) will be merged last, allowing

many crossovers to mix their gene values. In the running example, a and b were the

first merged cluster, meaning that only their leaf nodes can perform a crossover that

splits their values, while a and d are not linked until the root of the linkage tree, and

as a result the subtrees a, d, ab, abc, de, and def can all freely mix their gene values.

As a side effect to using hierarchical clustering, LTGA is able to recover from

some amount of confusion of gene linkages. Consider the reverse, a nonhierarchical

crossover that always maintains the linkage between the most linked genes. There,

the variation operators would be unable to increase the entropy of a cluster once it is

formed, without first reducing the entropy of some other group of genes even lower.

In LTGA, crossover occurs inside all clusters, with the potential of increasing the

www.manaraa.com

38

Table 1.3: Two parent crossover with least linked first ordering as used by Original.
Bold indicates which genes changed and a * indicates that changes were
kept.

Parents 000000 111000
def 000000 111000
de 000000 111000
abc 111000 000000
ab 110000 001000

Single Bit Crossover Here

entropy of that cluster, making it less likely to form that cluster in the future without

impacting the diversity of the rest of the population.

1.4.1. Repeated Evaluations. If no preventative measures are taken, LTGA

will create an immense number of duplicate individuals. For example, only four of

the twenty individuals created in Table 1.3 are unique. As a slight prevention, all of

the published LTGA variants avoid evaluating individuals that are identical to their

parents, or at least make no mention of deviating from the original LTGA formulation

that did this. While helpful, this does not catch all of the duplicates that are created.

In the same example, all four unique individuals are created twice. For this study, a

hash table is used to ensure that no individual is evaluated twice. This provides an

accurate gauge of how many unique evaluations each LTGA variant uses and removes

any bias against LTGA variants that are more likely to create duplicate individuals.

1.4.2. Subtree Ordering. The order in which subtrees are used to perform

crossover is one of the primary differences between LTGA variants. In Original and

LT-GOMEA, subtrees are applied in least linked first order. In this ordering, the

crossover masks are stored in a stack. All of the individual loci are pushed randomly

onto the stack. During each iteration of tree construction, the newly formed cluster

is also pushed onto the stack. Table 1.3 shows the ordering for the running example.

Since def was the last cluster to be merged, it is the first to be applied. The emphasis

of this choice of ordering is for crossover to perform solution refining. The initial

www.manaraa.com

39

crossovers are likely to be large and will be based on the least amount of information

in the linkage tree. These steps provide search space exploration. The more linked

LTGA believes a cluster of genes to be, the more likely it believes that keeping those

genes together will allow for an individual to improve by crossing them. As such,

this method starts with the least predictable crossovers, followed by something very

similar to local search, bringing the solution to a local optima.

An alternative subtree ordering was used in Pairwise which sorts the clusters

based on size instead of linkage. This method is more akin to optimizing the parts

of the problem you know the most about before using the optimized pieces to make

larger changes. Table 1.4 provides an example for this ordering. Smallest first is

not the direct opposite of least linked first. One major difference is that least linked

first has the potential to deal with the same set of genes in a number of sequential

crossovers, where as in smallest first that is very unlikely. In the example, de is crossed

directly after ab and before abc, which means if there is a linkage between ab and

de that was previously undiscovered, this ordering has the potential to try it before

modifying c. In general, subsequent crossovers in smallest first subtree ordering are

less likely to deal with the same genes.

1.4.3. Parent Selection. In Original and Pairwise, all crossovers for a single

offspring are based on two parents, similar to normal Genetic Algorithms (GAs). To

create each child, two parents are selected at random. For each cluster in the linkage

tree, two children are created by swapping the genetic material of the parents for that

cluster. If either of the children created in one step of the crossover are better than the

best of the parents, both of the parents are replaced by the children before continuing

on to the next subtree. This method of replacement ensures that the genetic diversity

inside a single crossover is unchanged, as whatever patterns existed in the parents

before crossover will still exist after crossover. Often this has a polarizing effect, as

the better of the parents is likely to improve by taking the best parts of the weaker

www.manaraa.com

40

Table 1.4: Two parent crossover with smallest first ordering as used by Pairwise. Bold
indicates which genes changed and a * indicates that changes were kept.

Parents 000000 111000
Single Bit Crossover Here
ab 110000 001000
de 000000 111000
abc 111000 000000
def 000000 111000

parent. After all of the linkage clusters have been applied, the best child created

during the entire process is copied into the next generation. This means that each

parent pairing creates a single child. As LTGA uses generational survivor selection,

to achieve a steady population size parents must participate in creating more than

one offspring each generation. Since parents are modified during the creation of

their offspring, subsequent offspring created by the same parent will benefit from the

learning performed during the creation of their first. Table 1.3 and Table 1.4 provide

examples for this type of crossover. The subtree clusters ab and abc swap 00 with 11

and 000 with 111 respectively. While abc does improve one of the children, it is not

better than both of the parents (it is in fact a duplicate of one of the parents) and the

change is therefore not kept. If there were more genes in the individuals and the left

parent was able to use abc as all ones better than the right, then the changes would

have been kept.

The LTGA variant Linkage Tree Global Optimal Mixing Evolutionary Algo-

rithm (LT-GOMEA) differs from Original and Pairwise by performing crossover in a

method more similar to Estimation of Distribution Algorithms than GAs. Instead of

selecting two parents to pull genetic material from, LT-GOMEA starts by cloning a

single parent to initialize the child. For each subtree crossover mask, LT-GOMEA

chooses a random parent from the population to donate genetic material to the child

for that mask. If the child is improved, the changes will be kept, otherwise they are

reverted. While it is not explicitly stated as part of LT-GOMEA, the donated genetic

www.manaraa.com

41

material is assumed here to not be identical to the child’s gene values, as doing so

would waste a chance at improving the individual. Tables 1.5 and 1.6 provide ex-

amples of performing global mixing crossover using the population and linkage tree

provided in Table 1.2. When performing crossover on abc and def, the child receives

genetic material from a random parent with different genetic material than its own.

In both cases this represents an improvement and the material is kept.

In [29], a variant to LT-GOMEA was proposed which tried all possible dona-

tions for each crossover before choosing to keep any. This change allows it to perform

a steepest ascent local search on each subtree cluster for each individual, finding the

global next best. Unfortunately, doing so incurs significant overhead and causes pre-

mature convergence due to large subtrees copying so much of an individual as to allow

the current best individual to spread too rapidly.

1.5. EXPERIMENTS

While most of the permutations listed in Table 1.1 are valid ways to configure

an LTGA, this paper focuses on the variants most likely to achieve interesting results.

From the work with LT-GOMEA and Pairwise, it appears that subtree ordering and

crossover represent the ways in which the state-of-the-art LTGA variations differ. To

examine the effects of these variations, empirical test results are presented for all four

combinations of least first linkage, smallest first linkage, two parent crossover, and

global mixing, which are represented by Original+, Pairwise, LT-GOMEA, and the

novel combination Linkage Tree Smallest First Global Mixing Evolutionary Algorithm

(LTS-GOMEA). While global next best is an option for crossover, [29] tested LT-

GOMEA against global next best and found it to be significantly inferior to not

warrant further investigation. The full description of what options each LTGA variant

employs is available in Table 1.1.

www.manaraa.com

42

Table 1.5: Global mixing crossover with least linked first ordering as used by LT-
GOMEA. Bold indicates which genes changed and an * indicates that
changes were kept.

Parent 000000
def 000111*
de 000001
abc 111111*
ab 001111

Single Bit Crossover Here

Table 1.6: Global mixing crossover with smallest first ordering as used by LTS-
GOMEA. Bold indicates which genes changed and an * indicates that
changes were kept.

Parent 000000
Single Bit Crossover Here
ab 110000
de 000110
abc 111000*
def 111111*

In order to ensure a minimal population size, each LTGA variant was tuned to

each problem using a modified version of bisection [30]. In order to remove operator

bias and further generalize the method, the bisection used here starts by setting the

initial population size to the minimum possible for the algorithm, which in this case

is two. It then proceeds by testing to see if its guess meets the success criteria.

If not, then it doubles its guess and tries again. Once the criteria are met, the

current guess is used as the maximum population size and the previous guess is

the minimum population size for bisection. This ensures the starting minimum is

below the population size required and the starting maximum is at least as high as

required. In this instance, the required success rate was 24 of 25 runs finding the

global optimum. When actually gathering experimental results, all experiments used

100 runs.

To reduce the noise generated by the initial population, a set of individuals

was created for each run of each population size on each problem. These sets of

www.manaraa.com

43

individuals were then all optimized using SAHC. Having all versions of LTGA share

initial populations for the same population size facilitates better examining of how

each algorithm utilizes the information in those populations. Furthermore, any dif-

ference in population size is then more clearly indicative of a need for different initial

information, and not just caused by random chance.

1.6. DECEPTIVE TRAP

The canonical benchmark for LTGA is the deceptive trap (Trap-k) prob-

lem [20], which divides the genome into separate traps of length k bits. Each trap is

scored using Eq. 1.8, where t is equal to the sum of the bit values in the trap.

trap(t) =

k − 1− t, t < k

k, t = k
(1.8)

Each trap is fully deceptive, in that all non-optimal values lead away from the global

optimum of all ones toward the local optimum containing all zeros. As a result, any

crossover that affects less than a complete trap will likely cause both individuals to

move away from the global optima. This need to preserve linkage, coupled with trap

independence, makes Trap-k an ideal proof of concept benchmark for LTGA.

LTGA needs an initial population that contains the optimized value for each

trap in at least one individual. Local search on the deceptive trap function ensures

that all traps in all individuals are initialized to either the optimum value (all ones)

or the local optimum value (all zeros). The first benefit for LTGA is the complete

removal of entropy for each trap. Independent of trap size, after local search all traps

will contain less than one bit of information. As a result, when LTGA builds the gene

clusters, all genes in a trap will have the minimum possible distance from each other.

Furthermore, when performing a crossover using a subset of the cluster (i.e., a subtree

www.manaraa.com

44

of size less than k), new trap values cannot be created as there is no way to change

less than k bits in any individual that will improve its fitness. Thus, the only way

for LTGA to lose track of a trap’s grouping is if the entire population agrees on the

value between two traps. In such an event it is still unlikely that LTGA will create a

trap with a value other than all ones or all zeros. When performing a crossover that

contains one or more complete traps, LTGA’s behavior changes depending on the type

of crossover in use. The final best offspring of Original and Pairwise, using two-parent

crossover, will contain all of the optimized traps that started in either individual. LT-

GOMEA and LTS-GOMEA will solve even faster, as after all complete traps have

been crossed over, the individual produced will contain all optimized traps that exist

anywhere in the population.

The second benefit of local search for LTGA is the increase in the number of

optimized traps in the starting population. The probability of a trap containing an

optimal value in a single individual increases from k
2k

to k+1

2k
, since SAHC will not

change any randomly generated optimized traps, and will improve all traps with a

single incorrect bit to the optimum. As a minor downside, if there is any trap in

which none of the individuals in the population contain the optimized version, LTGA

will be unable to find the global optimum as it is incapable of creating any allele that

does not exist somewhere in the current population.

Tables 1.7 and 1.8 provide the experimental results for the LTGA variations

on trap-5 and trap-7, respectively. As expected, all of the algorithms required the

same initial population size, due to their identical requirements on the existence of

optimized traps. The rarest trap count value given for each problem is the average

number of individuals in the initial population containing the optimized version of

the trap with the lowest frequency of individuals containing its optimized version over

all successful runs.

www.manaraa.com

45

Table 1.7: Deceptive Trap results, k=5

P
o
p
u
la
ti
o
n
S
iz
e

R
a
r
e
st

T
r
a
p

C
o
u
n
t

L
o
c
a
l

S
e
a
r
c
h

S
te
p
s

E
v
a
ls

T
o

S
u
c
-

c
e
ss

N=50

Original+ 26 1.94 513.93 1946.53 (481.90)
LT-GOMEA 26 1.94 513.93 21.31 (5.55)

Pairwise 26 1.94 513.93 2200.38 (468.01)
LTS-GOMEA 26 1.94 513.93 89.81 (0.48)

N=100

Original+ 24 1.52 922.33 6134.35 (1244.64)
LT-GOMEA 24 1.52 922.33 47.91 (10.19)

Pairwise 24 1.52 922.33 6794.50 (1307.67)
LTS-GOMEA 24 1.52 922.33 179.82 (0.48)

N=150

Original+ 32 2.26 1827.23 15430.62 (2625.32)
LT-GOMEA 32 2.26 1827.23 79.65 (14.06)

Pairwise 32 2.26 1827.23 15507.38 (2577.15)
LTS-GOMEA 32 2.26 1827.23 269.78 (0.48)

Where the versions of LTGA vary is in the number of evaluations after local

search that each requires to achieve success. Most notably, both versions using global

mixing (LT-GOMEA and LTS-GOMEA) require far less than either form of two-

parent crossover. When performing global mixing, each crossover mask that contains

exactly one trap will result in the child having the optimized version of that trap after

crossover. This is because the child either has the optimized version, and therefore

no chance to improve for that crossover mask, or it has the suboptimal version and

will therefore randomly select a parent with the only other genetic material for that

crossover mask: the optimized value. Since two-parent crossover can only create

offspring containing the optimized traps from its two parents, multiple crossovers are

required to build individuals such that when they are paired, at least one has the

www.manaraa.com

46

Table 1.8: Deceptive Trap results, k=7

P
o
p
u
la
ti
o
n
S
iz
e

R
a
r
e
st

T
r
a
p

C
o
u
n
t

L
o
c
a
l

S
e
a
r
c
h

S
te
p
s

E
v
a
ls

T
o

S
u
c
-

c
e
ss

N=49

Original+ 64 1.83 1486.62 2148.50 (571.09)
LT-GOMEA 64 1.83 1486.62 13.41 (3.43)

Pairwise 64 1.83 1486.62 2454.71 (579.23)
LTS-GOMEA 64 1.83 1486.62 90.91 (0.27)

N=98

Original+ 78 1.76 3541.38 12983.56 (2990.20)
LT-GOMEA 78 1.76 3541.38 31.89 (7.08)

Pairwise 78 1.76 3541.38 14082.40 (2884.49)
LTS-GOMEA 78 1.76 3541.38 181.92 (0.26)

N=147

Original+ 80 1.57 5410.32 27150.74 (5581.73)
LT-GOMEA 80 1.57 5410.32 53.68 (11.26)

Pairwise 80 1.57 5410.32 30189.41 (4738.40)
LTS-GOMEA 80 1.57 5410.32 272.96 (0.17)

optimized value for all traps. The difference between LT-GOMEA and LTS-GOMEA

is trivial in this case, as the difference is how many crossover masks are tried before

all single trap masks are applied. In LTS-GOMEA there will be 2N subtrees with

a size less than or equal to k, as opposed to LT-GOMEA where, depending on tree

construction, there can be as few as 2 · (N/k) − 1 subtrees with less than or equal

linkage to the single trap subtrees. These formulas are near perfect predictors of the

experimental number of evaluations found in Tables 1.7 and 1.8.

1.7. DECEPTIVE STEP TRAP

The artificial nature of the Trap-k problem, as exploited by SAHC, makes

LTGA’s performance on this benchmark an unlikely predictor of its ability on more

www.manaraa.com

47

realistic problems. In order to create a very similar problem to Trap-k that cannot

be exploited as much by SAHC, the creation of StepTrap-k,s as defined in Eq. 1.9

is proposed. Similar to Trap-k, StepTrap-k,s uses a series of non-overlapping trap

functions, where each trap is scored using the sum of the bits set to one. The optimal

value for each trap is all ones, with a local optimum of all zeros. All other configura-

tions improve monotonically as they approach all zeros. The only difference between

normal Trap-k and StepTrap-k,s is that StepTrap-k,s includes plateaus of length s.

If s is set to one, then StepTrap-k,s is identical to Trap-k. For s > 1, up to s − 1

bits can change without a change in the fitness of non-optimal traps. By modifying

Trap-k to StepTrap-k,s and setting s to two, SAHC will still create optimized traps

at the same probability as in Trap-k, but it will leave the majority of traps in some

partial state between all zeros and all ones. As such the loss of entropy for each trap

will not be as extreme as in normal Trap-k, making LTGA more prone to clustering

errors.

step trap(t) =

⌊

(k − s) (mod s) + trap(t)

s

⌋

(1.9)

Tables 1.9 and 1.10 provide the experimental results for each variation of

LTGA on the StepTrap-k,s problem using s = 2 with k set to 5 and 7 respectively.

Unlike the uniform population sizes found on Trap-k, all LTGA variants needed a

different population on StepTrap-k,s. For all N and k tested, LTS-GOMEA was the

least destructive to existing optimized traps, and was therefore able to achieve the

global optima with the smallest population sizes.

To understand why global mixing with smallest first ordering is the least de-

structive to existing optimized traps, we first need to examine how optimal mixing is

able to lose an optimized trap. In order for a child to not have an optimized trap that

exists in its parent, some part of the crossover step that created that mistake also has

to improve another trap, raising the child’s fitness more than it lost by disturbing the

optimized trap. Incorrectly linked crossovers can include parts of multiple traps. If,

www.manaraa.com

48

Table 1.9: Deceptive Step Trap results, k=5, s=2

P
o
p
u
la
ti
o
n
S
iz
e

R
a
r
e
st

T
r
a
p

C
o
u
n
t

L
o
c
a
l

S
e
a
r
c
h

S
te
p
s

E
v
a
ls

T
o

S
u
c
-

c
e
ss

N=50

Original+ 73 8.66 414.4 13744 (2925.2)
LT-GOMEA 67 8.09 383.1 9643 (2606.3)

Pairwise 74 9.43 422.3 13475 (2901.1)
LTS-GOMEA 49 5.34 278.2 11192 (2163.7)

N=100

Original+ 86 9.78 893.7 46579 (7085.9)
LT-GOMEA 84 9.41 874.1 32533 (4820.6)

Pairwise 97 11.42 1011.6 50669 (7921.5)
LTS-GOMEA 62 6.32 642.7 36272 (4755.3)

N=150

Original+ 101 11.35 1520.8 91652 (13411.8)
LT-GOMEA 96 10.64 1449.6 58591 (7269.7)

Pairwise 107 12.54 1610.5 100951 (14306.7)
LTS-GOMEA 73 7.31 1103.0 68129 (10462.3)

when performing these crossovers, the amount some of the traps improve is greater

than the fitness lost by breaking one of the other traps, the change is still kept.

Consider the example where a, b, c, and z are incorrectly linked together. The

first three are part of one trap that is not at either optima in the parents, and the

fourth is part of another trap which one of the parents has optimized. The crossover

abc improves its trap by increasing its fitness two points, which offsets the crossover

of z, which decreases its trap value one point. As a result, the optimized trap is lost.

Smallest first ordering is sometimes able to avoid this problem by making minimal

changes first. In the example, if any of a, b or c are linked before all three are

combined with z and crossing that subtree can achieve even a single point of fitness

www.manaraa.com

49

Table 1.10: Deceptive Step Trap results, k=7, s=2

P
o
p
u
la
ti
o
n
S
iz
e

R
a
r
e
st

T
r
a
p

C
o
u
n
t

L
o
c
a
l

S
e
a
r
c
h

S
te
p
s

E
v
a
ls

T
o

S
u
c
-

c
e
ss

N=49

Original+ 120 4.30 535.6 36033 (4756.3)
LT-GOMEA 135 4.66 599.0 34349 (5035.3)

Pairwise 147 5.76 654.4 42689 (5746.5)
LTS-GOMEA 117 4.18 521.4 39870 (6170.5)

N=98

Original+ 233 8.71 1841.0 180075 (17685.8)
LT-GOMEA 197 7.20 1549.5 130998 (16004.0)

Pairwise 265 10.26 2090.6 222781 (25374.9)
LTS-GOMEA 143 4.37 1127.0 147621 (15173.7)

N=147

Original+ 256 9.58 2899.9 371343 (35206.8)
LT-GOMEA 317 12.17 3596.4 292347 (35440.8)

Pairwise 309 11.97 3509.9 485905 (50916.7)
LTS-GOMEA 200 6.61 2268.3 319875 (27276.5)

increase, then when crossing abcz there will no longer be enough improvement to

offset the damage.

Conversely, because smallest first is more likely to push individual traps to

their local optima before performing larger crossovers, it is less likely that larger

crossovers that include partial traps will make enough of an improvement to be con-

sidered successful. This means that until better linkage information is found, most of

the larger crossovers in smallest first ordering will likely be wasted. Least linked does

not have this problem, and in fact the most tightly linked crossovers at the end of

search are more likely to make improvements, and help prevent wasted evaluations.

As an indirect added bonus, every successful crossover reduces the entropy of most if

not all of the traps it effects, making the next generation’s linkage tree more accurate.

www.manaraa.com

50

This is true because as traps are pushed to either extreme, StepTrap-k,s approaches

the Trap-k problem, which is very easy for LTGA to solve, as shown in Section 1.6.

Two-parent crossover is even more likely to destroy optimized traps than global

mixing, as shown in Tables 1.9 and 1.10. While two-parent crossover can have all of

the same flaws as global mixing for optimized trap destruction, it can also lose a

trap due to parent pairing. If two parents are paired such that the worse parent

has an optimized trap in a location the better parent does not, and no crossover

exists that can move that trap without significantly damaging the other parent, that

genetic material can be lost. It is possible that this explains why smallest first does

not help Pairwise as much as LTS-GOMEA, as even though crossover is not directly

destroying traps, the inability for Pairwise to move traps between parents is resulting

in their loss. One final consideration about the trade off between LT-GOMEA and

LTS-GOMEA is the inclusion of the initial search steps as evaluations. If either

is applied to a problem where partial reevaluation is not an option, the number of

evaluations required for local search will be about N times larger than the number

of local search steps. LTS-GOMEA’s smaller population size allows it to solve all

of the StepTrap-k,s problems except N = 49, k = 7, s = 2 in less evaluations than

LT-GOMEA if local search evaluations are included.

Similar to normal Trap-k, if LTGA is able to correctly link each trap indepen-

dently before all optimized versions of any trap are lost, it is very unlikely that any

LTGA variant will fail to reach the global optimum. This is because any crossover that

moves a single trap from one parent to another can only improve that trap’s fitness,

which will shift the population toward both extremes, again making it resemble Trap-

k. The only way to lose an optimized trap now would be to cross multiple traps into a

child, where more traps are made optimal than are made non-optimal. Smallest first

ensures that any crossover that moves multiple traps will first optimize the individual

traps, which again reduces the likelihood of this happening. Two-parent crossover

www.manaraa.com

51

is also unlikely to have this issue as, independent of what order traps are crossed,

optimal traps that are lost in one step can be reclaimed in subsequent crossovers with

the same parent or will be optimized before they can contribute to a lost optimized

trap.

1.8. NEAREST NEIGHBOR NK

NK landscapes are a set of randomly generated benchmark problems [19]. An

NK landscape is defined by the number of dimensions used (N), the number of other

genes each gene relies on to calculate its own fitness (k), the epistasis table defining

the linkages between genes, and N fitness functions which determine the fitness of

each collection of linked genes. Nearest neighbor NK landscapes are a subset of NK

landscapes in which each gene is linked to the k genes that directly follow it, with

the final genes wrapping around. This subset is of interest for testing LTGA as it

contains overlapping blocks of genes with varying levels of linkage. Furthermore,

by utilizing dynamic programming it is possible to determine the optimal value for

nearest neighbor NK landscapes in polynomial time [31].

Table 1.11 shows the results of each LTGA variant tested on nearest neighbor

NK using k = 5. Unlike the previous two benchmarks, Pairwise was able to outper-

form both global mixing strategies on N = 30 and N = 40 in both population size

and total number of evaluations. Original+ was also able to achieve a lower number

of evaluations on N = 40. The most likely cause for this is LTGA’s inability to

capture the overlapping dependencies inherent in nearest neighbor NK. When per-

forming two-parent crossover, all of the donated information comes from the same

individual. As such, any partial improvements made to a child are more likely to

work well with subsequent crossovers with the same parent as both sets of genes were

effective together in at least that parent.

www.manaraa.com

52

Table 1.11: NK results, k=5

P
o
p
u
la
ti
o
n
S
iz
e

L
o
c
a
l

S
e
a
r
c
h

S
te
p
s

E
v
a
ls

T
o

S
u
c
-

c
e
ss

N=30

Original+ 132 1038.06 8253.86 (3473.91)
LT-GOMEA 131 1039.16 7743.29 (4804.82)

Pairwise 110 867.97 7144.20 (3426.76)
LTS-GOMEA 151 1219.60 10634.28 (5112.47)

N=40

Original+ 323 3286.34 33141.11 (12757.48)
LT-GOMEA 501 5102.29 36300.81 (21529.69)

Pairwise 250 2549.38 28875.14 (10652.87)
LTS-GOMEA 317 3233.64 40525.74 (16589.45)

N=50

Original+ 383 4786.59 67280.11 (22403.78)
LT-GOMEA 393 4905.07 60809.10 (24655.13)

Pairwise 371 4636.94 69266.90 (21912.95)
LTS-GOMEA 276 3451.42 62564.14 (19336.66)

When performing global mixing, no similar linkage exists between donated

information. As a result, global mixing will attempt to combine genetic material

from many different parents, with only a limited ability to keep linked information

together. Individuals created in this way are not likely to be an improvement over the

existing individual, and will therefore be a wasted evaluation. Finally, the increased

population size is likely a symptom of premature convergence caused by this inability

to generate good solutions.

The reason why N = 40 switches which type of mixing is most effective is

probably because as the number of problem variables increases but the amount of

overlap stays constant, the effect of incorrect linkage is lessened. This may explain

www.manaraa.com

53

why both global mixing variants were able to reduce their required population size

from N = 40 to N = 50.

1.9. CONCLUSIONS

Using the Trap-k problem to test the different variations of LTGA provides

little to no information, as SAHC is able to convert what is normally a very diffi-

cult problem into a trivial one for any type of LTGA. In order to provide a better

benchmark for non-overlapping linked genes, this paper introduces the StepTrap-k,s

problem, which modifies the traditional Trap-k to contain fitness plateaus of width

s. These plateaus prevent SAHC from pushing all traps to the extremes, providing a

much more challenging problem for LTGA.

This new problem reveals global mixing’s ability to converge faster and use

smaller population sizes than two-parent crossover. By applying the smallest crossover

masks first, LTGA can better avoid being destructive to existing optimized structures

in the population when incorrect linkage occurs at the expense of needing more search

evaluations. As a result, on problems where local search cannot exploit partial reeval-

uation, the novel LTGA variant LTS-GOMEA, which uses smallest first ordering, may

outperform LT-GOMEA, which uses least linked first ordering, on non-overlapping

linkage problems.

Testing the LTGA variants on nearest neighbor NK landscapes provides insight

to how each variant handles linkage styles less suited to tree structures. On problems

with lots of overlap, the two-parent variants seem to perform better than global

mixing due to the inherent linkage between subsequent crossovers between the same

two parents. As global mixing is able to significantly outperform two-parent crossover

in all other instances, improving how LTGA stores linkage information to allow for

better representation of overlap is a very important next step for making LT-GOMEA

and LTS-GOMEA more generally applicable.

www.manaraa.com

54

SECTION

2. CONCLUSIONS

The first paper underscores the futility of attempting to manually configure

an Evolutionary Algorithm (EA) optimally for a particular problem by providing ex-

perimental evidence that dynamically changing many parameters can positively effect

the solution quality of an EA. The search space associated with dynamic parameter

configuration is combinatorially large. Without automated controls of parameters, or

redesign of the internals of an EA to no longer require parameters, both the time con-

suming processes available to novices and the experiential processes used by experts

will not be able to cope with the exploding search space.

Achieving automated configuration of an EA is one of the great unsolved

challenges in the field of Evolutionary Computation. The second paper provides a

promising template for how to start tackling this challenge. Allowing the EA control of

its recombination method diminishes the need to configure this aspect of the EA while

improving the EA’s performance and robustness. By following a similar method, it is

likely possible to continue making EAs more robust, with more of the configuration

controlled by evolution and less by the user.

Employing the method of redesign, the Linkage Tree Genetic Algorithm (LTGA)

variants analyzed in the third paper are able to sidestep much of the difficulty of con-

figuration. Using a single parameter, LTGA is able to solve certain classes of very

difficult problems by automatically adapting to problem structure. The analysis per-

formed provides a stepping stone to making LTGA even more flexible and powerful,

while maintaining its relative independence from problem specific configuration.

www.manaraa.com

55

The techniques discussed in the latter two papers represent steps towards

making EAs more robust. While neither completely avoids the need for configura-

tion, both reduce the difficultly of configuration, and as a result are more powerful

and easier to apply than more traditional EAs. Future work can be done both ex-

tending and combining these techniques to be even more robust, potentially avoiding

configuration all together and allowing EAs to achieve even wider application.

www.manaraa.com

56

BIBLIOGRAPHY

[1] J. Smith. Modeling GAs with Self-Adaptive Mutation Rates. In Proceedings of
GECCO 2001, pages 599–606, 2001.

[2] J. Cook and D. Tauritz. An Exploration into Dynamic Population Sizing. In Pro-
ceedings of GECCO 2010 - Genetic And Evolutionary Computation Conference,
pages 807–814, 2010.

[3] A. Eiben, M. Schut, and A. deWilde. Is Self-Adaptation of Selection Pressure
and Population Size Possible? In Proceedings of PPSN IX, pages 900–909, 2006.

[4] A. Nwamba and D. Tauritz. Futility-Based Offspring Sizing. In Proceedings of
GECCO 2009, pages 1873–1874, 2009.

[5] J. Gomez. Self Adaptation of Operator Rates in Evolutionary Algorithms. In
Proceedings of GECCO 2010, pages 162–173. Springer Berlin, Heidelberg, 2004.

[6] E. Smorodkina and D. Tauritz. Toward Automating EA configuration: the Par-
ent Selection Stage. In IEEE Congress on Evolutionary Computation, pages
63–70, 2007.

[7] G. Papa. Parameter-less Evolutionary Search. pages 1133–1134. Atlanta, GA,
USA, 2008.

[8] F. Vafaee, W. Xiao, P.C. Nelson, and C. Zhou. Adaptively Evolving Probabilities
of Genetic Operators. Machine Learning and Applications, pages 292–299, 2008.

[9] D. E. Goldberg. The Design of Innovation: Lessons from and for Competent
Genetic Algorithms. Kluwer, 2002.

[10] M. Hauschild and M. Pelikan. Network Crossover Performance on NK Land-
scapes and Deceptive Problems. In Proceedings of GECCO 2010 - Genetic And
Evolutionary Computation Conference, pages 713–720, 2010.

[11] G. R. Harik and D. E. Goldberg. Linkage Learning Through Probabilistic Expres-
sion. Computer Methods In Applied Mechanics and Engineering, pages 295–310,
2000.

[12] L. Dioşan and M. Oltean. Evolving crossover operators for function optimization.
pages 97–108. Springer-Verlag, 2006.

[13] I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biolischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.

www.manaraa.com

57

[14] N. L. Cramer. A Representation for the Adaptive Generation of Simple Se-
quential Programs. Proceedings of First International Conference on Genetic
Algorithms, pages 183–187, 1985.

[15] S. Meyer-Nieberg and H.G. Beyer. Self-Adaptation in Evolutionary Algorithms.
Parameter Setting in Evolutionary Algorithms, pages 47–76, 2006.

[16] A.E. Eiben and J.E. Smith. Evolutionary strategies. In Introduction to Evolu-
tionary Computing, pages 73–75. Springer-Verlag, Berlin Heidelberg, 2003.

[17] K. A. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. Ph.D. thesis, 1975.

[18] H. Mühlenbein, D. Schomisch, and J. Born. The Parallel Genetic Algorithm as
Function Optimizer. Parallel Computing, pages 619–632, 1991.

[19] S. Kauffman. The origins of order: self organization and selection in evolution.
Oxford University Press, 1993.

[20] Kalyanmoy Deb and David Goldberg. Analyzing deception in trap functions.
In Proceedings of FOGA II: the Second Workshop on Foundations of Genetic
Algorithms, pages 93–108, 1992.

[21] S. K. Smit and A. E. Eiben. Comparing Parameter Tuning Methods for Evolu-
tionary Algorithms. IEEE Congress on Evolutionary Computation, pages 399–
406, 2009.

[22] Martin Pelikan, David Goldberg, and Fernando Lobo. A Survey of Optimization
by Building and Using Probabilistic Models. Computational Optimization and
Applications, 21(1):5–20, 2002.

[23] N. Hansen and A. Ostermeier. Completely Derandomized Self-Adaptation in
Evolution Strategies. 9(2):159–195, 2001.

[24] G. R. Harik, F. G. Lobo, and K. Sastry. Linkage learning via probabilistic mod-
eling in the extended compact genetic algorithm. Springer–Verlag, Berlin, 2006.

[25] D. Thierens. Linkage tree genetic algorithm: first results. Genetic and Evol.
Comp. Conf.(GECCO-2010), pages 1953–1957, 2010.

[26] D. Thierens. The linkage tree genetic algorithm. Parallel Problem Solving from
Nature, pages 264–273, 2010.

[27] M. Pelikan, M. Hauschild, and D. Thierens. Pairwise and problem-specific dis-
tance metrics in the linkage tree genetic algorithm. Genetic and Evol. Comp.
Conf.(GECCO-2011), pages 1005–1012, 2011.

[28] D. Thierens and P.A.N Bosman. Optimal mixing evolutionary algorithms. Ge-
netic and Evol. Comp. Conf.(GECCO-2011), pages 617–624, 2011.

www.manaraa.com

58

[29] P.A.N Bosman and D. Thierens. The roles of local search, model building and
optimal mixing in evolutionary algorithms from a BBO perspective. Genetic and
Evol. Comp. Conf.(GECCO-2011), pages 663–670, 2011.

[30] K. Sastry. Evaluation-relaxation schemes for genetic and evolutionary algo-
rithms. Master’s thesis, University of Illinois at Urbana-Champaign, Department
of General Engineering, 2001.

[31] A. H. Wright, R. K. Thompson, and J. Zhang. The computational complexity of
N-K fitness functions. IEEE Trans. on Evolutionary Computation, 4(4):373–379,
2000.

www.manaraa.com

59

VITA

Brian Wesley Goldman was born in the suburbs of Saint Louis, Missouri,

attending primary, middle, and high school in the Parkway school district. Brian

attended Missouri University of Science and Technology (S&T) for his undergrad-

uate degree in Computer Science, and was awarded a Bachelor of Science Summa

Cum Laude in 2010. Brian graded for three courses at S&T and spent two semesters

teaching the Introduction to C++ Laboratory course. He has also interned with

AT&T, Dynetics, and Sandia National Laboratories. Brian has competed in ten arti-

ficial intelligence competitions, including taking first place twice in the S&T human

vs computer chess tournament, second place in the University of Illinois Urbana-

Champaign MechMania competition, and 25th out of 4619 world wide in the Google

AI competition. He received his Masters degree from S&T in May 2012.

	Robust evolutionary algorithms
	Recommended Citation

	PUBLICATION THESIS OPTION
	ABSTRACT
	ACKNOWLEDGMENT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	Introduction
	1. Meta-Evolved Empirical Evidence of the Effectiveness of Dynamic Parameters
	ABSTRACT
	INTRODUCTION
	METHODOLOGY
	RESULTS & DISCUSSION
	CONCLUSION & FUTURE WORK
	2. Self-Configuring Crossover
	ABSTRACT
	INTRODUCTION
	RELATED WORK
	BACKGROUND
	METHODOLOGY
	Crossover Encoding and Application
	Evolving Crossovers
	Added Complexity
	EXPERIMENTAL SETUP
	RESULTS
	DISCUSSION
	Adaptations to Each Fitness Function
	Initial Crossover Length Sensitivity

	CONCLUSION

	FUTURE WORK
	3. Linkage Tree Genetic Algorithms: Variants and Analysis
	ABSTRACT
	INTRODUCTION
	INITIAL POPULATION
	CONSTRUCTING TREES
	Cluster Distance
	Pairwise Approximation

	CROSSOVER
	Repeated Evaluations
	Subtree Ordering
	Parent Selection
	EXPERIMENTS
	DECEPTIVE TRAP
	DECEPTIVE STEP TRAP
	NEAREST NEIGHBOR NK
	CONCLUSIONS

	conclusions
	BIBLIOGRAPHY
	VITA

